首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7783篇
  免费   27篇
  国内免费   33篇
航空   4013篇
航天技术   2699篇
综合类   34篇
航天   1097篇
  2021年   52篇
  2019年   55篇
  2018年   102篇
  2017年   66篇
  2016年   59篇
  2014年   149篇
  2013年   186篇
  2012年   170篇
  2011年   251篇
  2010年   175篇
  2009年   271篇
  2008年   350篇
  2007年   197篇
  2006年   189篇
  2005年   193篇
  2004年   182篇
  2003年   252篇
  2002年   147篇
  2001年   262篇
  2000年   157篇
  1999年   195篇
  1998年   238篇
  1997年   160篇
  1996年   216篇
  1995年   278篇
  1994年   253篇
  1993年   154篇
  1992年   187篇
  1991年   102篇
  1990年   99篇
  1989年   199篇
  1988年   90篇
  1987年   89篇
  1986年   90篇
  1985年   256篇
  1984年   209篇
  1983年   181篇
  1982年   194篇
  1981年   233篇
  1980年   82篇
  1979年   62篇
  1978年   69篇
  1977年   70篇
  1976年   51篇
  1975年   91篇
  1974年   55篇
  1973年   54篇
  1972年   75篇
  1971年   56篇
  1970年   54篇
排序方式: 共有7843条查询结果,搜索用时 15 毫秒
1.
Cosmic Research - The results of an analysis of the space–time characteristics and dynamics of precipitations of magnetospheric electrons with energies in the range from 0.1 to 0.7 MeV are...  相似文献   
2.
This work aims to investigate far-UVC light at 222 nm as a new microbial reduction tool for planetary protection purposes which could potentially be integrated into the spacecraft assembly process. The major advantage of far-UVC (222 nm) compared to traditional germicidal UVC (254 nm) is the potential for application throughout the spacecraft assembly process in the presence of humans without adverse health effects due to the limited penetration of far-UVC light into biological materials. Testing the efficacy of 222-nm light at inactivating hardy bacterial cells and spores isolated from spacecraft and associated surfaces is a necessary step to evaluate this technology. We assessed survival of Bacillus pumilus SAFR-032 and Acinetobacter radioresistens 50v1 exposed to 222-nm light on proxy spacecraft surfaces simulated by drying the bacteria on aluminum coupons. The survival fraction of both bacteria followed a single stage decay function up to 60 mJ/cm2, revealing similar susceptibility of both species to 222-nm light, which was independent of the exposure rate. Irradiation with far-UVC light at 222 nm is an effective method to decontaminate the proxy spacecraft materials tested in this study.  相似文献   
3.
We present a detailed analysis of a widely used assay in human spatial cognition, the judgments of relative direction (JRD) task. We conducted three experiments involving virtual navigation interspersed with the JRD task, and included confidence judgments and map drawing as additional metrics. We also present a technique for assessing the similarity of the cognitive representations underlying performance on the JRD and map-drawing tasks. Our results support the construct validity of the JRD task and its connection to allocentric representation. Additionally, we found that chance performance on the JRD task depends on the distribution of the angles of participants’ responses, rather than being constant and 90 degrees. Accordingly, we present a method for better determining chance performance.  相似文献   
4.
A “Real-Time” plasma hazard assessment process was developed to support International Space Station (ISS) Program real-time decision-making providing solar array constraint relief information for Extravehicular Activities (EVAs) planning and operations. This process incorporates real-time ionospheric conditions, ISS solar arrays’ orientation, ISS flight attitude, and where the EVA will be performed on the ISS. This assessment requires real-time data that is presently provided by the Floating Potential Measurement Unit (FPMU) which measures the ISS floating potential (FP), along with ionospheric electron number density (Ne) and electron temperature (Te), in order to determine the present ISS environment. Once the present environment conditions are correlated with International Reference Ionosphere (IRI) values, IRI is used to forecast what the environment could become in the event of a severe geomagnetic storm. If the FPMU should fail, the Space Environments team needs another source of data which is utilized to support a short-term forecast for EVAs. The IRI Real-Time Assimilative Mapping (IRTAM) model is an ionospheric model that uses real-time measurements from a large network of digisondes to produce foF2 and hmF2 global maps in 15?min cadence. The Boeing Space Environments team has used the IRI coefficients produced in IRTAM to calculate the Ne along the ISS orbital track. The results of the IRTAM model have been compared to FPMU measurements and show excellent agreement. IRTAM has been identified as the FPMU back-up system that will be used to support the ISS Program if the FPMU should fail.  相似文献   
5.
Lake water height is a key variable in water cycle and climate change studies, which is achievable using satellite altimetry constellation. A method based on data processing of altimetry from several satellites has been developed to interpolate mean lake surface (MLS) over a set of 22 big lakes distributed on the Earth. It has been applied on nadir radar altimeters in Low Resolution Mode (LRM: Jason-3, Saral/AltiKa, CryoSat-2) in Synthetic Aperture Radar (SAR) mode (Sentinel-3A), and in SAR interferometric (SARin) mode (CryoSat-2), and on laser altimetry (ICESat). Validation of the method has been performed using a set of kinematic GPS height profiles from 18 field campaigns over the lake Issykkul, by comparison of altimetry’s height at crossover points for the other lakes and using the laser altimetry on ICESat-2 mission. The precision reached ranges from 3 to 7 cm RMS (Root Mean Square) depending on the lakes. Currently, lake water level inferred from satellite altimetry is provided with respect to an ellipsoid. Ellipsoidal heights are converted into orthométric heights using geoid models interpolated along the satellite tracks. These global geoid models were inferred from geodetic satellite missions coupled with absolute and regional anomaly gravity data sets spread over the Earth. However, the spatial resolution of the current geoid models does not allow capturing short wavelength undulations that may reach decimeters in mountaineering regions or for rift lakes (Baikal, Issykkul, Malawi, Tanganika). We interpolate in this work the geoid height anomalies with three recent geoid models, the EGM2008, XGM2016 and EIGEN-6C4d, and compare them with the Mean Surface of 22 lakes calculated using satellite altimetry. Assuming that MLS mimics the local undulations of the geoid, our study shows that over a large set of lakes (in East Africa, Andean mountain and Central Asia), short wavelength undulations of the geoid in poorly sampled areas can be derived using satellite altimetry. The models used in this study present very similar geographical patterns when compared to MLS. The precision of the models largely depends on the location of the lakes and is about 18 cm, in average over the Earth. MLS can serve as a validation dataset for any future geoid model. It will also be useful for validation of the future mission SWOT (Surface Water and Ocean Topography) which will measure and map water heights over the lakes with a high horizontal resolution of 250 by 250 m.  相似文献   
6.
In this research, it is presented the daytime amplitude scintillations recorded at VHF frequency (244 MHz) at an Indian low-latitude station, Waltair (17.7°N, 83.3°E) during seven continuous years (1997–2003). Contrary to the nighttime scintillation seasonal trends, the occurrence of daytime scintillations maximizes during summer followed by winter and the equinox seasons. The fade depths, scintillation indices and the patch durations of daytime scintillations are meager when compared with their nighttime counterparts. A co-located digital high frequency (HF) ionosonde radar confirms the presence of sporadic (Es) layers when daytime scintillations are observed. The presence of daytime scintillations is evident when the critical frequency of the Es-layer (foEs) is ≥4 MHz and Es-layers are characterized by a highly diffuse range spread Es echoes as can be seen on ionograms. It is surmised that the gradient drift instability (GDI) seems to be the possible mechanism for the generation of these daytime scintillations. It is quite likely that the spread Es-F-layer coupling is done through polarization electric fields (Ep) that develop inside the destabilized patches of sporadic E layers, which are mapped up to the F region along the field lines as to initiate the daytime scintillations through the GDI mechanism. Further, the presence of additional stratification of ionosphere F-layer, popularly known as the F3-layer, is observed on ionograms once the Es-layers and daytime scintillations are ceased.  相似文献   
7.
We have compared the TEC obtained from the IRI-2012 model with the GPS derived TEC data recorded within southern crest of the EIA in the Eastern Africa region using the monthly means of the 5 international quiet days for equinoxes and solstices months for the period of 2012 – 2013. GPS-derived TEC data have been obtained from the Africa array and IGS network of ground based dual-frequency GPS receivers from four stations (Kigali (1.95°S, 30.09°E; Geom. Lat. 11.63°S), Malindi (2.99°S, 40.19°E; Geom. Lat. 12.42°S), Mbarara (0.60°S, 30.74°E; Geom. Lat. 10.22°S) and Nairobi (1.22°S, 36.89°E; Geom. Lat. 10.69°S)) located within the EIA crest in this region. All the three options for topside Ne of IRI-2012 model and ABT-2009 for bottomside thickness have been used to compute the IRI TEC. Also URSI coefficients were considered in this study. These results are compared with the TEC estimated from GPS measurements. Correlation Coefficients between the two sets of data, the Root-Mean Square Errors (RMSE) of the IRI-TEC from the GPS-TEC, and the percentage RMSE of the IRI-TEC from the GPS-TEC have been computed. Our general results show that IRI-2012 model with all three options overestimates the GPS-TEC for all seasons and at all stations, and IRI-2001 overestimates GPS-TEC more compared with other options. IRI-Neq and IRI-01-corr are closely matching in most of the time. The observation also shows that, GPS TEC are underestimated by TEC from IRI model during noon hours, especially during equinoctial months. Further, GPS-TEC values and IRI-TEC values using all the three topside Ne options show very good correlation (above 0.8). On the other hand, the TEC using IRI-Neq and IRI-01- corr had smaller deviations from the GPS-TEC compared to the IRI-2001.  相似文献   
8.
The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA’s OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid’s surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun’s variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid’s most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid’s surface using the asteroid’s rotation as well as the spacecraft’s orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master’s and Ph.D. theses and other student publications.  相似文献   
9.
Active ionospheric experiments using high-power, high-frequency transmitters, “heaters”, to study plasma processes in the ionosphere and magnetosphere continue to provide new insights into understanding plasma and geophysical proceses. This review describes the heating facilities, past and present, and discusses scientific results from these facilities and associated space missions. Phenomena that have been observed with these facilities are reviewed along with theoretical explanations that have been proposed or are commonly accepted. Gaps or uncertainties in understanding of heating-initiated phenomena are discussed together with proposed science questions to be addressed in the future. Suggestions for improvements and additions to existing facilities are presented including important satellite missions which are necessary to answer the outstanding questions in this field.  相似文献   
10.
The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号